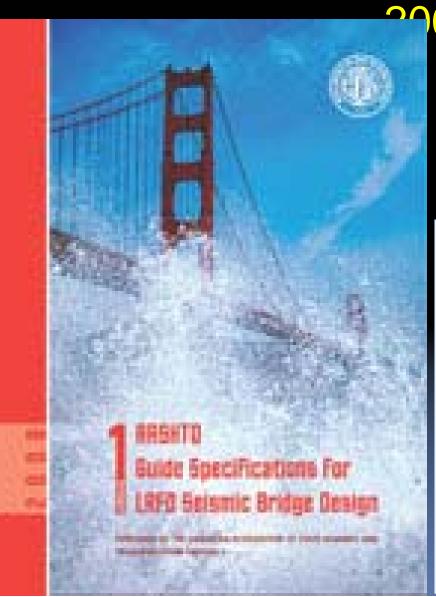


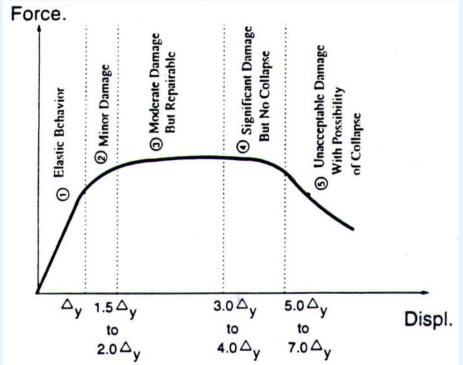
Highways for Life Demonstration Projects and Accelerated Bridge Construction in Washington State

Bijan Khaleghi

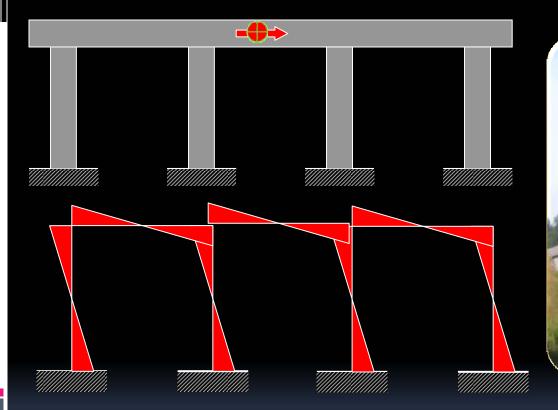
Bridge and Structures Office Washington State Department of Transportation


Presentation Outline:

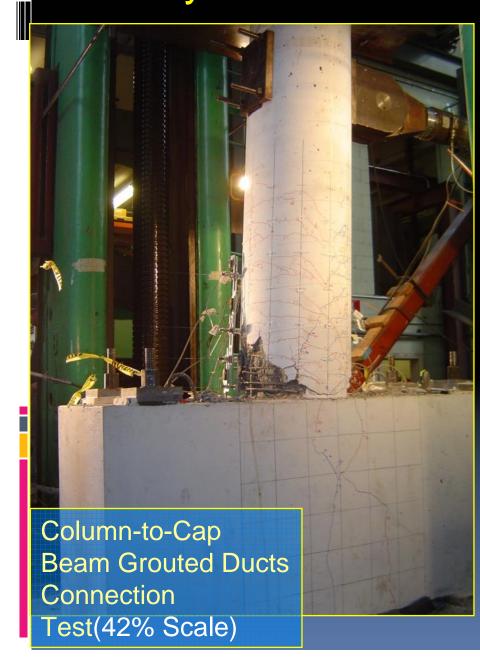
- Need for ABC
- HFL Demonstration Project Connection Design and Testing Column-to-Cap Beam Column-to-Spread Footing and Shaft Segmental Column **HFL Bridge Construction** Lessons Learned

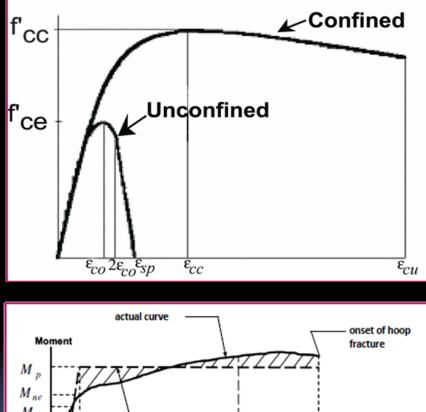

WSDOT Advisory Committee and Strategic Plan for ABC

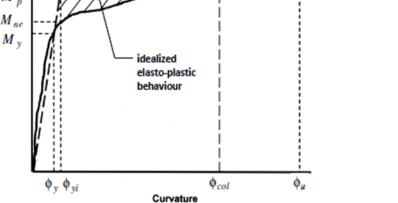
ABC Advisory Committee	Members
WSDOT Bridge Office	Jugesh Kapur, Ron Lewis, DeWayne Wilson, Bijan Khaleghi
WSDOT Construction Office	Mark Gaines
WSDOT Research Office	Kim Willoughby
WSDOT Regions	MaryLou Nebergall, Mike Morishige
FHWA - Washington	Debbie Lehmann, Barry Brecto
University of Washington	John Stanton, Marc Eberhard
Bridge Consultants	Lee Marsh, Scott Phelan, Yuhe Yang
Bridge Contractors	Tim Loucks
	Steve Sequirant, Chuck Prussack Marsh, Stanton, Eberhard, Khaleghi Eric Schultz, Hsieh, Collins, Sargent


Bridge Seismic Design LRFD Seismic Guide Specs (SGS) Since

Typical WSDOT Design Strategy: Type 1: Ductile Substructure with Essentially Elastic Superstructure


Bridge Substructure Seismic Design

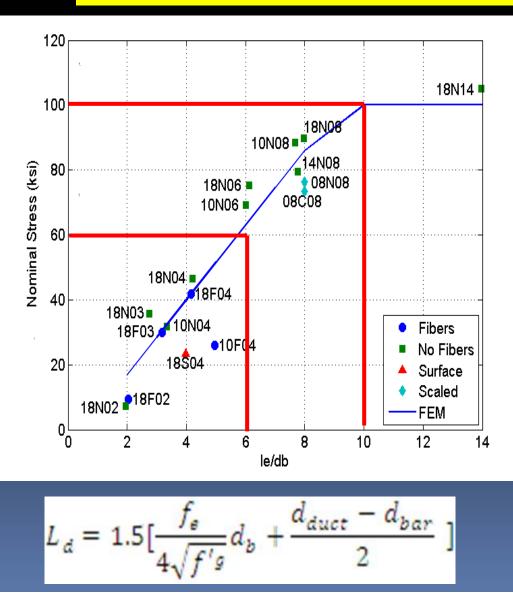




Connections need to be: Constructible Long term Performance and Adequate For Seismic Typical WSDOT Precast prestressed girder bridge with dropped bent cap

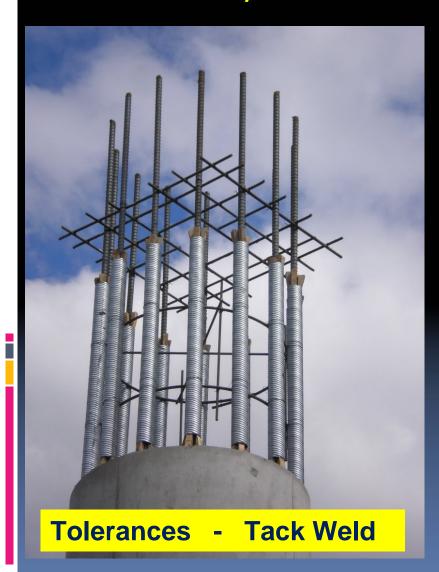
Ductility: Confinement and Moment Curvature

Full-Scale #18 Bar Anchorage Tests



Short *I_e*: pullout failure

Long *I_e*: bar fracture


WSDOT Research Project - UW

Bar Size - Duct Size - Embedment Length

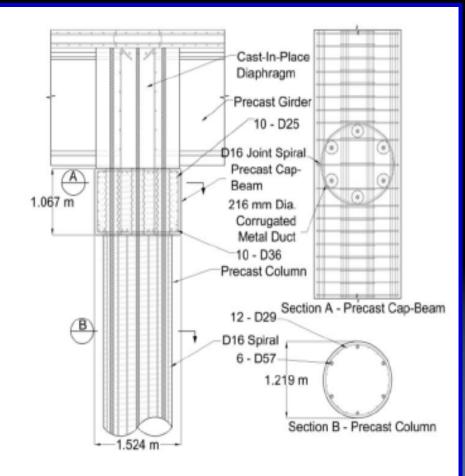
Bar Size	Nominal Duct Size, in.	Embedment Length, in.	Embedment / Bar Diameter
#3	2	12	29
#4	2.5	15	27
#5	3	15	21
#6	••	15	18
#7	••	20	21
#8	3.5	20	18
#9	3.5	20	16
#10	3.5	25	18
#11	4	25	16
#14	4	30	16
#18	4.5	40	16

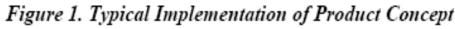
WSDOT ABC Project: Precast Bent cap SR 202 / SR 520

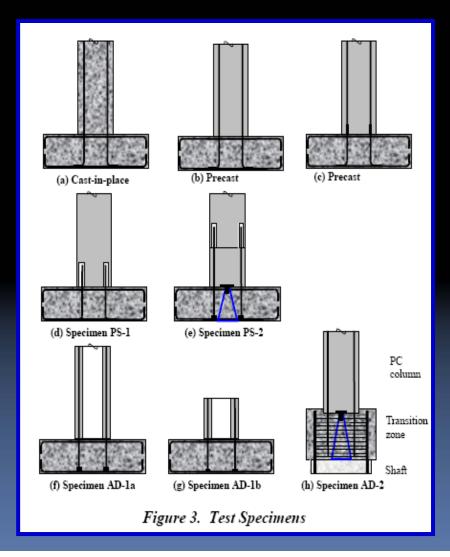
WSDOT ABC Project: Precast Bent cap SR 202 / SR 520

1^{1/2} Hours +/-Bent Cap Erection

Highways for Life (HFL)

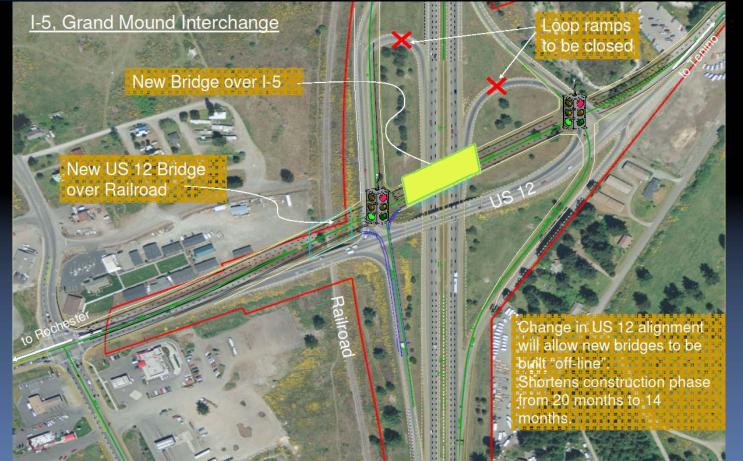

 Funded by FHWA's Rigby agt for Life Technology Partnerships Program

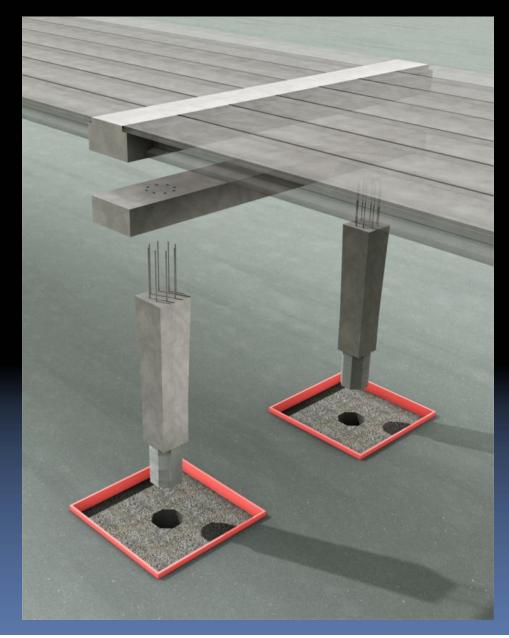

Project Team:


- BergerABAM Lee Marsh (PI)
- University of Washington John Stanton and Marc Eberhard
- Concrete Technology Corp. Steve Seguirant
- Washington State DOT (Bridge-Construction and Regions)

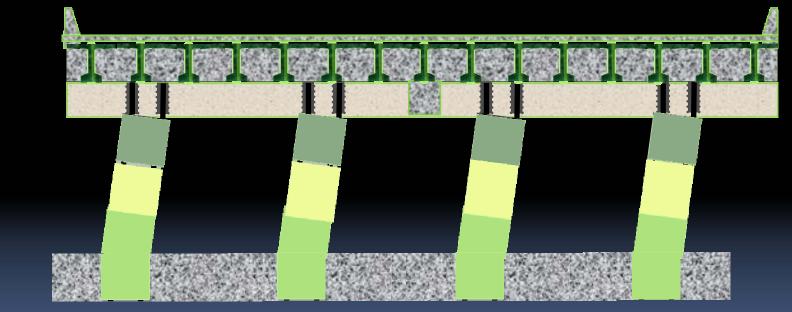
<u>August 18, 2011 Webinar:</u> http://fhwa.adobeconnect.com/n134083201108/

WSDOT Research Project: FHWA – HFL (ABAM – UW-WSDOT) Fully Precast Bridge in Seismic Regions

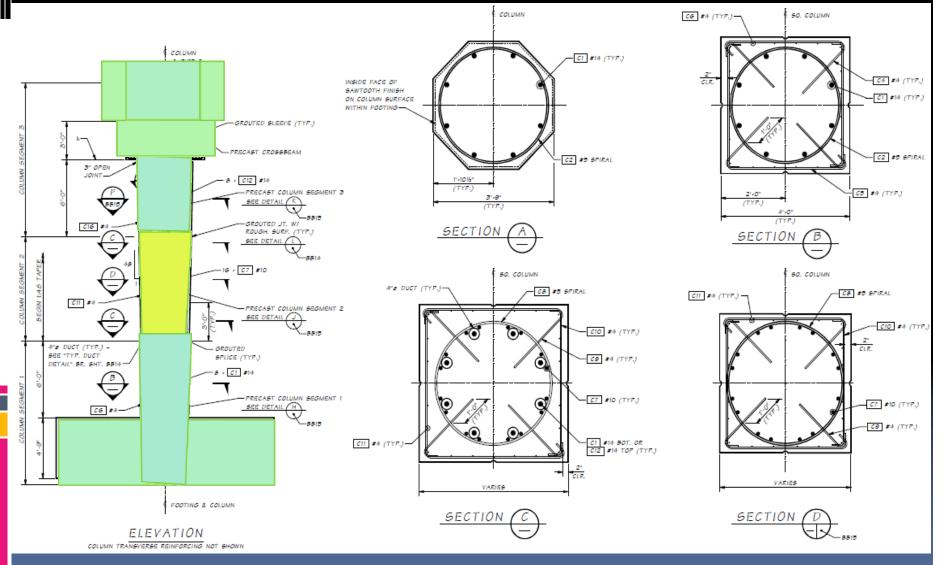



WSDOT HFL Project: I-5 Grand Mount to Maytown I/ 2-span Precast Girder Bridge

Span Length: 88 ft Bridge Width: 71 ft Skew:29.3 degrees


Precast Bent System for High Seismic Region

- Two-stage cap
- Precast Lower and CIP Upper
- Girders integral with combined lower Cap and upper Diaph
- Column Grouted Duct Connection
- Large bars at precast cap connection
- Socket connection at Footing


Fully Precast Bent with Dropped Bent Cap

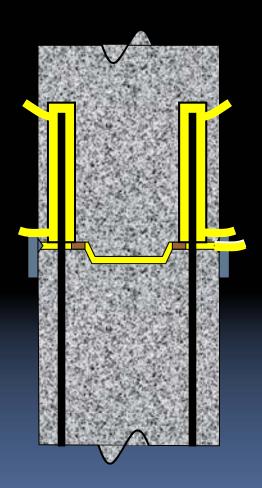
- Superstructure Precast Girder And Diaphragms
- Substructure Precast Columns And Bent Cap
- **Objective: CIP Emulative Behavior**

HFL Bridge Feature:
12 Precast Column Segments
2 Precast Pretensioned Bent Cap Segments
30 Precast Pretensioned Deck Bulb Tee Girders
96 Grouted Duct Connections

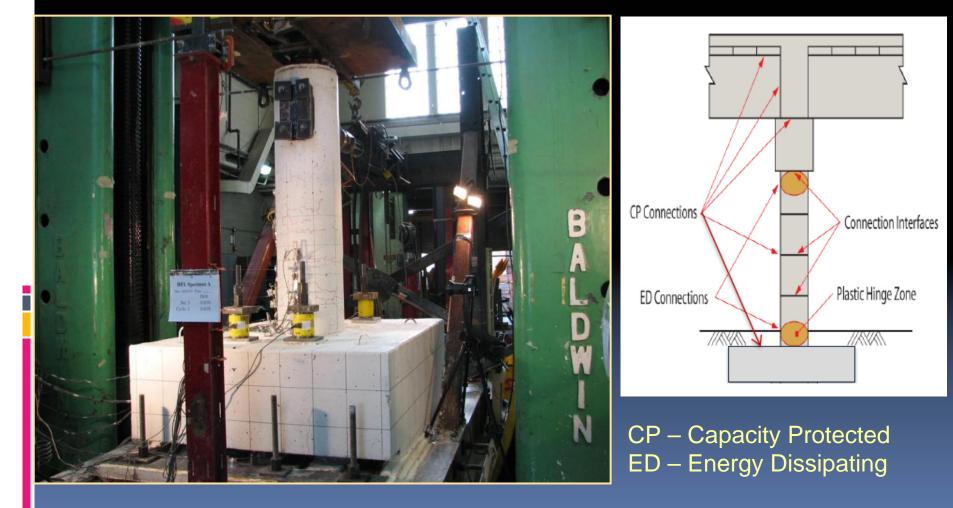
Fully Precast Bridge For Seismic Regions

Pier Elevation - Segmental Columns and Precast Bent Cap

WSDOT - FHWA -Highways for LIFE UW Test


TEST SPECIMEN

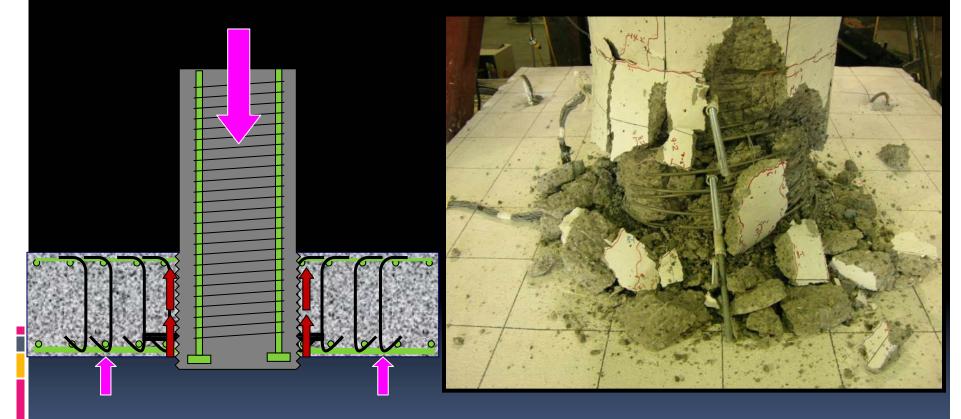
WSDOT - FHWA - Highways for LIFE (HFL) UW Test



Grouting the interface. (Silica fume grout. 12,500 psi.)

WSDOT Highways For Life Project

UW Test: Precast Segmental Column Embedded in CIP Concrete Footing



Specimen SF-2 after Lateral Load Test

Footing undamaged

Spread Footing Connection Gravity Load Test

Column crushed at: 3.5 * (1.25DL + 1.75LL) No damage to footing. No sign of punching failure

UW Drilled Shaft Tests

Precast Column Erection: Bridge Project in WA

HFL Precast Column Concept For City of Redmond 36th Street Bridge Project

Footing: Excavation, Shoring and Reinforcement

Work Zone: 44'-0" CIP Footing: 18' x 18' x 4'

Leveling Pad and Shims for Column Erection

Precast Column Segments

Column Dimensions	4' x 4' with circular core reinf.
Segment length	7'-10", 10'-0", 4'-10"
Segment weight	25 kips max
Reinforcement	8 #14 at ducts, (1% Ag)
Reinforcement At Splice	8 #14 at ducts and 16 #10 on either side of duct
Transverse Reinforcement	# 5 spirals at 4"
Duct Dimension	4" diameter galvanized metal
Bar-Duct Splice - Column	3'-0" (2'-6" required, 3' used for splice)
Duct Splice - Bent Cap	3'-0" (2'-6" required, 3' used for depth)
Concrete Strength	4.0 ksi
Ducts	Semi-rigid, corrugated, galvanized - 31-gauge

Precast Column 1st Segment Placement Shipment of Column

Shipment of Column Segments To the Jobsite Steel Frame Template for Column Erection

Footing and Precast Column

- Square-to-Octagonal Pransitom
- **Top Layer Reinforcement**
- Isolation Gap at Column Base

Precast Column Segments Erection

Roughened Concrete Surface at Joints Color Coded Shims for Column Segment Erection 1" Gap for Grouting Grout Vents Vertically Aligned

Precast Column Placement

- Completion of Segmental Column
- Erection Braces are Removed All Columns to be Erected Prior to Bent Cap Erection

Precast Pretensioned Bent Cap

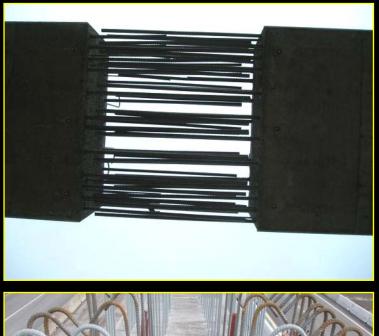
 -abricated In 2 Segments for Ease of Shipping and Handling

 Assembled at the Jobsite with Cast-in-place Concrete Closure

Crossbeam Length	96'-0"
Crossbeam Dimensions	3'-0" x 6'-6"
Segment Lengths	53' and 37'-6"
CIP Closure Dimension	5'-6" x 3'-0"
Segment Weight	165 kips, 120 kips
Concrete Strength	4.0 ksi
Reinforcing Steel	32 #11
Prestressing Strands	36 – 0.6" dia. Low Relax
CIP Closure Strength	4.0 ksi

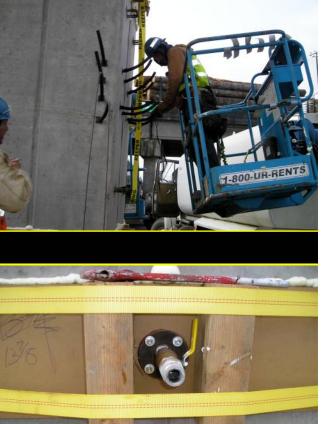
Precast Bent Cap Placement

Two Erection Cranes Segment Weight :(120 &165 kips) 16 Duct Connection per Segment CIP Closure



Precast Bent Cap - Closure

- Precast Bent Cap Erection
- Bar And Strand Clearance
- Cast Concrete Closures



Column and Bent Cap Joint Install Grout Form Grossang Pump Grout Close Grout Tubes

Grout strength, ksi : 2.5(1d), 4.0 (3d), 5.0(7d), 6.0(28d)

Grouting the Joints

Inspect Grout in Joint and Grout Tubes

- Patch Back Grout Tubes
- Investigate Unfilled Grout Tubes
- Repair Unfilled Grout Tubes

Superstructure Precast DBT Girders

Girder Type	W35DG DBT - 5" CIP Slab
Precast Girder Length	84'-3"
Girder Weight	80 Kips – Including Precast Diaphragms
Concrete Strengths: Transfer Final CIP Slab	7.9 Ksi 8.9 Ksi 4.0 Ksi – Class 4000P
Prestressing Strands	20–0.6" Dia. Straight 11–0.6: Dia. Harped
Girders Connection	Welded Ties at 5'-0"
End Supports	Integral & Elastomeric Pad

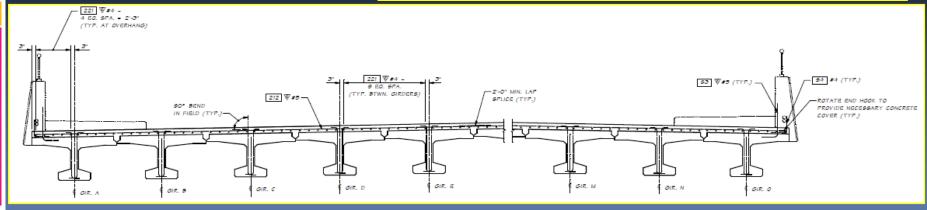
Precast Girder Erection

Girder Total Weight Including Diaphragms: 80 Kips Single Crane for Girder Erection

Superstructure Girder Erection

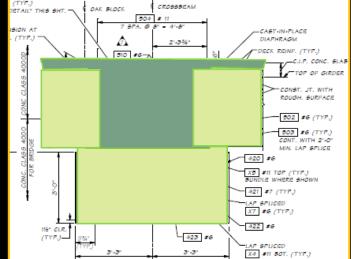
Completion of Precast Girder Erection

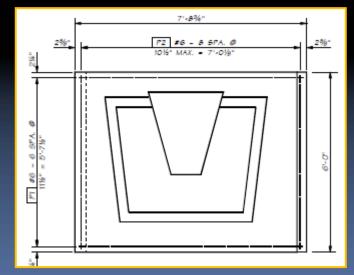
 Precast girders Included End and Intermediate Diaphragms


Carl

Precast Girder Connections

Typical Section Welded Tie Connections CIP Concrete Slab





CIP Pier Diaphragm

Integral Joint CIP Concrete Diaphragms Extended Strands and Stirrups

Precast End Panel

Precast Intermediate Diaphragms

- Precast Intermediate Diaphragms
- Headed Bars and Anchor Assembly
- Precast End Diaphragms

Tolerances – Precast Bent System

WSDOT STD SpecificationsFabrication TolerancesConstruction Tolerances

Lessons Learned Precast Bent System

- Tolerance of Precast Pieces Not Consistent
 With Survey Tolerances
- The Contractor Would Have Preferred The Columns to be Cast in One Segment Instead Of Three
- Transverse Bars in the Closure Should Be Made From Single-Bend Bars Instead of "U" Shaped Stirrups
- Use CIP instead of Precast End Diaphragms

	Lessons Learned Related to Precast Segmental
•	The Contractor Preferred Ducts in the Lower Section
•	Erection Plans to Include Shim Locations and Grout Lifting Pressures
•	Pressure From Grouting May Lift Segments
•	Grout Form Quality and Sealing is Key to Successful Grouting
•	Would Be Helpful if Grout Tubes Were Mapped As Part of the Precast Operation

HFL Completion Schedule

- Laboratory Work Completed Spring 2011
- Bridge Project Complete Summer 2011

Hfl Project Deliverable:

- Final Reports Fall 2011 Including:
 - Design Specifications Formatted In SGS
 - Construction Specifications Tolerances
 - Materials Specifications
 - Design Examples And Aids

WSDOT Highways For Life Project: Fully Precast Bridge Bents for Use in Seismic Regions Last stages of Bridge Construction, Sept 2011

http://fhwa.adobeconnect.com/n134083201108